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Contingency and Its Two Indices Within
Conditional Probability Analysis

John S. Watson
University of California at Berkeley

Four theoretical bases for detecting a contingency between behavior and consequent stimuli are
considered: contiguity, correlation, conditional probability, and logical implication. It is argued that
conditional probability analysis is statistically the most powerful of these options, in part due to its
provision of two indices of contingency: a forward time probability that reinforcement follows
behavior and a backward time probability that behavior precedes reinforcement. Evidence is cited
that both indices appear to bear on the learning of a variety of animals, although they are unequally
salient to human adults and to artificial neural networks designed to solve time-series functions. It
is hypothesized that humans may acquire the capacity to detect contingency in the progressive
sequence: contiguity, correlation, forward time conditional probability, backward time conditional
probability, and ultimately logical implication.
Key words: contingency, infancy, learning, reinforcement

Which came first, contingency or re-
inforcement? I do not think this ques-
tion is as fruitless or as impenetrable
as the proverbial chicken or egg. Al-
though this hypothesis is perhaps not
testable, it seems likely that reinforcer
power (and thus the possibility of re-
inforcement) evolved because contin-
gencies existed between the behavior
of organisms and beneficial changes in
the environment that that behavior
could affect. From this view, contin-
gency preceded reinforcement in the
evolution of learning. This "just so"
story would not seem just so good
were it reversed with the claim that re-
inforcers evolved prior to organisms
evolving a capacity to affect that fea-
ture of the environment. Why would
stimuli be given power to affect behav-
ior if no contingency existed between
those stimuli and the organism's be-
havioral options? As Skinner noted in
a discussion of "Why is a reinforcer
reinforcing?" in Science and Human
Behavior (1953),
The connection between reinforcement and sa-
tiation must be sought in the process of evolu-
tion. We can scarcely overlook the great biolog-
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ical significance of the primary reinforcers.
Food, water, and sexual contact, as well as es-
cape from injurious conditions . . ., are obvious-
ly connected with the well-being of the organ-
ism. An individual who is readily reinforced by
such events will acquire highly efficient behav-
ior. (p. 83)

When framed in this light, it seems
plausible that reinforcer power is no
more or less than a part of one of
Mother Nature's contingency detection
devices. Presumably giving reinforcing
power to select stimuli directs adaptive
change in behavior with respect to con-
tingencies that bear upon the organ-
ism's reproductive fitness. In general,
this perspective views reinforcers as
having evolved their power to provide
reinforcement because this capacity to
modify behavior frequency led to a
greater engagement of contingencies
that resulted in advantageous access to
food, water, reproductive opportunity,
and avoidance of life-terminating situ-
ations (Gewirtz & Pelaez-Nogueras,
1992).
So then, in this view, contingency is

primal. Reinforcers work to direct the
organism toward certain of the many
contingencies that exist in the potential
relationships of behavior to environ-
mental effects. Presumably primary re-
inforcers direct the organism toward
engagement of contingencies that bear
directly on reproductive fitness. But
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how does this work, really? Reinforcer
power can specify some contingencies
as more important than others, but the
simple fact that a consequence of be-
havior is capable of altering the
strength of the behavior does not spec-
ify how this fact provides detection and
engagement of that contingency. What
is needed is some mechanism that ei-
ther directly or indirectly detects the
essential structure of the beneficial
contingency. If reinforcer power does
not entail contingency detection, then
what else is needed to provide an adap-
tive mechanism for contingency detec-
tion?
To help frame this question, imagine

that you were asked to design an effi-
cient contingency-detecting system for
some modem robotics device. The de-
vice would have some number of out-
puts and some number of inputs. Your
detection system would need to detect
when one or more of the outputs had
an effect on one or more of the inputs.
If this is to be a powerful, all-purpose
system, then it should be capable of
detecting contingency even when the
contingent input occurs with some de-
lay or despite the fact that it may be
less than perfectly contingent (i.e., as
evidenced by the fact that the input
sometimes does not occur following
the output that it generally is contin-
gent upon or it occurs occasionally in
the absence of the output that it gen-
erally is contingent upon). Presumably
Mother Nature had this job before you.
It was part of the task of providing a
means of contingency detection when
behavior affected the environment in a
manner that altered an organism's re-
productive fitness. Presumably she
used Darwin's selection process to
come up with a workable contingency-
detection device or perhaps a number
of different devices for different spe-
cies (or different development levels of
any species). Your task, however, is
just to come up with at least one func-
tional device. What are your options?

During the past 30 years, researchers
working with human infants have cen-
tered their attention on what appear to

CONTIGUITY?

CD = f( time M - time K)

Figure 1. Depiction of contingency detection
(CD) being computed by reference to temporal
contiguity of mobile movement (M) and infant's
kick (K).

be four different options for how con-
tingency might be detected. I will give
these the short titles of contiguity, cor-
relation, conditional probability, and
logical implication. Let us consider
each in turn before I state my reasons
for centering my attention on the con-
ditional probability option.

I find it useful to illustrate these four
options with a concrete situation within
which they might each be applied.
Imagine an infant lying in a crib.
Above the infant is a mobile. One of
the infant's legs has a ribbon attached
to it, and that ribbon is also attached to
the mobile. This situation is modeled
after an experimental procedure used
for many years by Rovee-Collier and
her colleagues (Rovee & Rovee, 1969;
Rovee-Collier, 1987). The physical ar-
rangement provides a contingency re-
lation between the infant's foot move-
ment and the movement of the mobile.
The question now is, on what basis
might the infant detect this contingen-
cy?

Contiguity
What appears to be the simplest

method of contingency detection is as-
sessment of temporal contiguity (see
Figure 1). This was Skinner's choice.
In the field of infant learning, it ap-
pears to have been Gewirtz's choice
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(Gewirtz & Pelaez-Nogueras, 1992). It
is an indirect detection method in the
sense that it does not really compute or
measure contingency per se but relies
on a consequence of contingency under
certain special assumptions. The spe-
cial assumptions are that contingent ef-
fects of behavior usually occur with a
short latency from the time of that be-
havior and that these same effects do
not often occur noncontingently. A
more familiar way of stating this per-
spective is to say that an effective con-
tingency requires a reinforcer to occur
within a very short time following be-
havior. If reinforcement is delayed too
long, then it is effectively noncontin-
gent and will have no reinforcing con-
sequence for behavior that is truly af-
fecting its occurrence. Another impli-
cation of this indirect method of de-
tecting contingency is that reliance on
contiguity predicts that a reinforcer
will have a reinforcing effect if it oc-
curs shortly following a behavior even
by chance alone. This is the basis for
so-called "superstitious" learning
(Skinner, 1953). If this were possible,
it would mean that a true contingency
is not a necessary condition for rein-
forcement effects, although this logical
relation appears to be the assumption
of some Skinnerian theorists (Gewirtz
& Pelaez-Nogueras, 1992). Whether
superstitious learning actually occurs
has been contested (Justice & Looney,
1990; Staddon & Simmelhag, 1970;
Timberlake & Lucas, 1985), but we
will not worry about that debate at this
time.
The basic proposal of the contiguity

perspective, then, is that the subject
will show effects of the contingency as
a simple effect of how frequently the
consequence occurs shortly after in-
stances of behavior. This is a reason-
able basis for detecting contingency, so
long as contingency between a behav-
ior and a stimulus is expressed imme-
diately and the stimulus is not occur-
ring frequently by chance. A problem
begins to arise when contingent effects
are delayed. In the concrete example
we are considering, we can surely

imagine that the mobile would move
immediately after the foot movement
so that the contingency would be ex-
posed for detection by many instances
of contiguity between behavior and
mobile stimulation. A notable aspect of
this detection system is that all it re-
quires is a means of sensing the tem-
poral separation of the behavior and its
contingent effect. This mechanism is
symbolized in Figure 1 by a stopwatch.
I am not concerned with how this sen-
sitivity is realized biologically, whether
by some simple derivative of neuronal
refractory processes or by some more
specialized mechanism.

Correlation

An alternative perspective that is
less vulnerable to random contiguity is
that provided by statistical correlation.
In this case the subject is presumed to
be sensitive to the instances in which
the consequence occurs in the absence
of the behavior and to instances in
which the behavior occurs in the ab-
sence of the stimulus. A number of
contiguous occurrences of reinforce-
ment can be negated by a number of
noncontiguous occurrences of the stim-
ulus. More important, the use of cor-
relation provides subjects with a poten-
tial way in which to detect delayed
contingencies. If the stimulus predict-
ably occurred 10 s after the behavior,
then the amount of behavior in any pe-
riod of time will be positively corre-
lated with amount of contingent stim-
ulation in an equal period of time be-
ginning 10 s later. And of notable im-
portance would be the fact that random
occurrences of the stimulus would not
generate a reliable correlation at any t
+ n delay.
Under the conditions presented in

our concrete example of a baby teth-
ered to mobile (Figure 2), we can
imagine a very high correlation being
derived from the temporal pattern of
behavior and stimulus. Periods of time
in which there were more leg kicks
would be associated with greater
amount of mobile movement. Given
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CORRELATION?

CD of JrKM )

Figure 2. Depiction of contingency detection
(CD) being computed by reference to correlation
(r) of amount of mobile movement (M) and
amount of infant's kicking (K) over time.

that the infant could simulate the com-
putation of this temporal correlation,
the result would be expected to be pos-
itive and high.

Presumably the computation of cor-
relation, no matter how crudely simu-
lated, will require using more infor-
mation than simply the time between
behavior and stimulus. To represent
this assumption of additional compu-
tational power beyond that needed by
contiguity analysis, I have replaced the
metaphorical stopwatch with a meta-
phorical hand calculator in Figure 2.

Conditional Probability
Another option for contingency de-

tection is the use of conditional prob-
ability analysis. This is not the most
complex of the four options I will con-
sider, but it is the one I shall elaborate
on in the following sections of the pa-
per. Its primary advantage over the pre-
ceding two options, given that it could
be employed by an animal, is that it
keeps track of the direction of disas-
sociation. In the relation between any
behavior and stimulus, disassociation
can occur in cases of behavior not fol-
lowed by the stimulus and by instances
of the stimulus occurring in the ab-
sence of the behavior. Contiguity anal-
ysis is virtually blind to both forms of
disassociation; it simply focuses on in-
stances of the stimulus following the

CONDITIONAL
PROBABILITY?

CD=f P(M/Kt)
and
CD=f P(K/tM)

Figure 3. Depiction of contingency detection
(CD) being computed by reference to the for-
ward time or sufficiency index of conditional
probability, p(M/Kt), to be read as the probabil-
ity of mobile movement (M) in a specified time
span (t) following a kick (K), and by reference
to the backward time or necessity index of con-
ditional probability, p(K/tM), to be read as the
probability of a kick (K) in a specified time span
(t) preceding a mobile movement (M).

behavior. Correlation analysis is par-
tially sensitive to both forms of disas-
sociation, but it mixes them together
and provides a single index of associ-
ation adjusted for the combined extent
of disassociation.' So, for example, in
the regression analysis attempting to
predict a stimulus from a response,
there would be just one coefficient of
association such as r = .5. By contrast,
conditional probability analysis pro-
vides two indices of association, each
adjusted for its own direction of dis-
association. Consider our baby and
mobile (Figure 3). In the forward di-
rection, the conditional probability of
mobile movement following a leg kick
might be 1.0. At the same time, in the
backward direction, the conditional
probability of a leg kick preceding a
mobile movement might be only .5 if,

' I say it is only partially sensitive because
sensitivity will vary with sample size of the tem-
poral periods. For example, with sufficient sam-
ple size, intermittent reward of .5 will provide a
correlation of behavior and reward across sam-
ple time periods that approximates r = 1.0. With
smaller sample periods, the coefficient of cor-
relation would begin to reflect the extent of dis-
association.
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say, the wind blew the mobile as often
as the infant moved it by kicking. In
previous papers (Watson, 1979, 1994),
I have tried to demonstrate the virtual
independence of these two statistical
indices of contingency and the theoret-
ical advantage of keeping track of both
of them. I have also provided some ev-
idence for the sensitivity of human in-
fants to both indices (Watson, 1979).
For the purposes of the present discus-
sion, I will move on to complete the
summary of the four focal options for
contingency detection.
The details of Figure 3 include a

modification of the metaphorical hand
calculator. In this detection device for
computing conditional probability,
there is inclusion of an additional
memory register over that involved in
the device for the computation of cor-
relation. This particular whimsy is
meant to serve as a reminder that this
detection device keeps the two direc-
tions of disassociation separate.

Logical Implication

The final option of contingency de-
tection I will consider is that of logical
implication, as expressed in symbolic
logic. Bower (1989) has proposed this
interesting possibility for even very
young infants. Historically, a common-
ly held assumption has been that de-
tection of contingency served as the
basis of an inference about causality.
In the present case, the direction of in-
ference is reversed. The presence of
contingency is presumed to be evalu-
ated on the basis of the logical impli-
cations for potential causal relations of
observed pairings of events. For ex-
ample, if the subject observes instances
of A and B as well as instances of not
A and not B and then observes A and
not B, Bower proposes that these ob-
servations are consistent with B im-
plies A. They are not consistent with
A implies B. Bower proposes the sub-
ject will test this hypothesis by trying
to disprove it. That interesting idea
about modulating behavior in order to
test the hypothesis will not concern us

LOGICAL IMPLICATION?

CD = f( K implies M )
and
CD = f( not K implies M )
and
CD = f ( K implies not M )
and
CD = f ( not K implies not MN)

"ERGO"

Figure 4. Depiction of contingency detection
(CD) being deduced (ERGO) by reference to the
logical implication of observed relations be-
tween the four causal options for combining mo-
bile movement (M) versus no movement (not
M) with kicking (K) versus no kicking (not K).

here. The point to note is simply that
the subject is conceived to be using the
logical relations between observed
pairings of events to develop a judg-
ment of their contingent association. In
an effort to be consistent with the prior
metaphors, Figure 4 replaces the mem-
ory registers with what might best be
called the "sense of implication" des-
ignated by ERGO.

The Advantages of Conditional
Probability Analysis

I propose that there are at least two
good reasons for embracing condition-
al probability analysis when theorizing
about the effects of variation in contin-
gency structure and the potential eval-
uation of that contingency by some
contingency-detection device. The first
is that it embodies a plausible basis for
statistical evaluation of confidence.
Neither contiguity analysis nor logical
implication analysis provides this ad-
vantage. Contiguity analysis simply fo-
cuses on the number of instances in
which reinforcement occurs immedi-
ately following behavior without re-
gard to the fact that this number may
be that which is expected by chance.
Logical implication analysis likewise
fails to consider the relative probability
of the categorical distinctions it makes
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among logically possible pairings of
events. A single instance of any cate-
gory is sufficient to establish the
"truth" of that pairing. The possibility
of pairings occurring by chance is not
considered. However, in a world in
which others are capable of controlling
the same outcomes as the individual in
question, coincidental conjunction of
the individual's behavior and stimuli
produced by others seems to be an in-
evitable likelihood.

Correlational analysis does provide a
statistical basis for evaluating the like-
lihood that its particular index of con-
tingency is reliable. In the simplest
manner, a particular index value is
more reliable as a function of the num-
ber of pairings upon which it is based.
Evaluation of reliability of a condition-
al probability is somewhat more com-
plicated but is quite computable. It
needs to be contrasted with the uncon-
ditioned probability of the target event.
Thus, if one knows that the probability
of A given B is .5, one needs to com-
pare that value with the unconditioned
probability of A, that is, the probability
of A without regard to whether B has
occurred. The correlation index ranges
from -1 to 1, with difference from 0
being of interest, and the conditional
probability ranges from 0 to 1, with
difference from unconditional proba-
bility being of interest.2
The second reason to favor condi-

tional probability analysis is that it can
(and should) make reference to the
temporal characteristics of the analysis.
In contiguity analysis there is an im-
plicit concern for temporal order. If A

2 An alternative proposal for the evaluation of
conditional probability has been what is termed
the difference between the conditional probabil-
ity of A given B and the probability of A given
the absence of B. This index also can vary be-
tween +1 and -1. I have argued elsewhere
(Watson, 1979) that this latter index has theo-
retical problems derived from its need to specify
instances of nonevents. However, given its per-
sistent popularity (Rescorla, 1967; Seligman,
1975; Shanks, 1985), I only note here that under
the special assumptions needed for its applica-
tion, its use carries the same implications as the
index I have specified.

is said to be temporally contiguous to
B, then it is conventional to interpret
that statement as meaning A follows B
in very little time. (Researchers under-
stand by conventional wisdom that re-
inforcement does not precede the be-
havior it is meant to affect.) In similar
fashion, logical implication analysis is
concerned with the temporal order of
events because it is tacitly held that in
causal relations, A implies B cannot
mean A causes B if A follows B (be-
cause that would imply final causa-
tion). Correlational analysis does not
usually make special reference to the
temporal order of the constituent
events in the pairings it evaluates.
However, it can and does so on occa-
sion. In the special domain of path
analysis, the temporal order of events
is of major concern, but this concern is
not intrinsic to the procedure of deriv-
ing a statistical coefficient of correla-
tion. As I have argued at length else-
where (Watson, 1979), time-based con-
ditional probability analysis must make
an explicit reference to its time base if
it is to develop an appropriate evalua-
tion of statistical reliability.

These, then, are the four basic op-
tions for contingency detection that
have been the focus of researchers in
the area of human infant learning. If
you accepted the challenge to develop
a contingency detector for a robotics
device, you would be wise to chose the
most powerful option you could man-
age to construct. Of the four we have
considered, conditional probability
analysis appears to be the most pow-
erful.
An obvious question at this point is

whether any of these options is em-
ployed by human infants or any other
subject of learning research. There is
not enough space here to review all the
relevant research that bears on this
question. For the purposes of this dis-
cussion I briefly note a few general ob-
servations. In research with animals,
human adults, and human infants, there
have been a variety of studies that have
tried to assess the subject's sensitivity
to statistical features of the contingen-
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cy that would imply that the subject
was sensitive to more than just conti-
guity of behavior and subsequent re-
ward. These range from studies of dogs
controlling shock (Maier, Seligman, &
Solomon, 1969), to rats controlling
food (Seligman, Meyer, & Testa,
1971), to infants controlling mobiles
(Watson, 1971, 1977), and to college
students controlling computer-gener-
ated images (Shanks, 1985, 1995). In
many of these reports a conclusion is
drawn that the data require an assump-
tion that the subject is using more than
just contiguity information in the pro-
cess of adjusting to the contingency.
The general conclusion I draw from

the array of existing studies is that all
four contingency-detection options are
viable and probably function in one
species or another. In animals with
greater computational capacity, my
guess is that evolution moved to more
accurate detection as provided in the
move from contiguity to the statistical,
or what some theorists (Shanks, 1995)
call normative, evaluation. As Shanks
argued, it is quite possible that these
computations are approximated by
simpler computational mechanisms
(e.g., the delta rule in associative com-
putation). Whether accomplished di-
rectly or by some algorithmic approx-
imation, it is probably only in humans
(perhaps only after some developmen-
tal time) that logical implication is em-
ployed in special contexts (but see
Bower, 1989). Although I have no
sound empirical basis for the proposal,
I would not be surprised if we even-
tually discover that humans undergo a
progressive change in their capacity to
use the four contingency-detection op-
tions. I suggest that the progression is
in the order I have presented these op-
tions: contiguity, followed by correla-
tion, followed by conditional probabil-
ity, followed by logical implication. I
suspect that arrival of a more advanced
capacity does not replace the less ad-
vanced; rather, the more advanced de-
vices are added to the organism's over-
all contingency-detection repertoire.
This proposal is consistent with the ob-

servation of Lewicka (1988), who has
proposed that contextual factors (e.g.,
as in approaching vs. avoiding stimuli)
may influence whether or not adult hu-
mans will show sensitivity to uncon-
ditional rates of stimuli when judging
their contingent rates.

Finally, based largely on my own re-
search (Watson, 1979, 1985), I suspect
that the capacity for simulating condi-
tional probability analysis develops in
humans within the first 6 months of
life, because by the age of 4 to 6
months, infants appear to show sensi-
tivity to both forms of statistical dis-
association. I would now like to pro-
pose an additional developmental tran-
sition that distinguishes the potential
developmental order of capacity to use
the two forms of statistical disassocia-
tion as provided by conditional proba-
bility analysis.

Before I turn to that proposal, let me
summarize what I have said so far. I
began by trying to point out what I
take to be the primal role of contingen-
cy in the evolution of learning. Rein-
forcer power evolved in the evolution-
ary context of behavior being capable
of affecting the access to and avoid-
ance of beneficial and damaging stim-
uli. In addition to reinforcer power, a
contingency-detection device was
needed. Seemingly the simplest device
was that provided with the device we
call sensitivity to contiguity. This is an
indirect detection device. It works in-
sofar as contingency is generally im-
mediate and the same stimuli are not
occurring with great frequency non-
contingently. The next two options we
considered are what might be termed
direct statistical assessments. They
each evaluate the temporal dependency
between behavior and stimuli, but they
differ in that whereas correlation sums
together both forms of disassociation,
conditional probability analysis keeps
these disassociations separate. The
fourth option is logical implication. I
proposed that although the latter was
the most complex in concept, it seems
vulnerable to errors of detection in a
noisy, probabilistic world due to im-
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precise control by multiple controllers.
On the other hand, in certain contexts
such as those involving rare events,
logical implication may play a special
role in uncovering contingencies that
are difficult to apprehend with statisti-
cal analysis. I concluded by noting that
it would not be surprising to me if
these four options each were to be
found as characteristic of some species
more so than others and at some de-
velopmental stages more so than oth-
ers, if not in some contexts more than
others.

Forward Versus Backward
Conditional Probability Analysis

Let me now turn to what I see as the
most interesting aspect of the option of
conditional probability analysis: its po-
tential derivation of two separate indi-
ces of contingency. Recall that by
keeping the two forms of disassocia-
tion separate, this contingency-detec-
tion device generates a forward time
index and a backward time index. I
have elsewhere (Watson, 1979) termed
these the sufficiency and the necessity
indices, respectively (see Lewicka,
1988, for a similar distinction using the
same terms). In the remainder of this
paper, I will try to make a case for a
historical and possibly causal distinc-
tion between these two indices.

Historically, it is clear that psychol-
ogy has focused almost exclusively on
the forward time index. When contin-
gency was experimentally reduced, it
was accomplished by reducing the
probability of a stimulus reward fol-
lowing the organism's response. How-
ever, this manipulation only reduces
the conditional probability relevant to
the question "what is the probability of
the reward following the behavior?" It
does not reduce the probability rele-
vant to the question "what is the prob-
ability of the behavior preceding the
reward?" So long as the contingency
situation does not also deliver rewards
noncontingently, the backward time in-
dex will remain perfect (i.e., 1.0), re-
gardless of how small the forward

probability becomes so long as it does
not reach zero. This may be hard to
believe, but consider our example of an
infant with a mobile overhead. Imagine
that we held the ribbon rather than at-
taching it to the infant's foot. Now we
pull the ribbon when the infant kicks
the right leg. We do this on a random
intermittent schedule that provides one
mobile move for two kicks on average.
This results in the probability of a mo-
bile movement being .5 immediately
after a kick. But note as well that
whenever a mobile movement has oc-
curred it is always the case that it was
immediately preceded by a kick. Thus,
although the forward probability is .5,
the backward probability is 1.
Of course the situation might be

quite the reverse. Consider what would
happen if we pulled the mobile ribbon
each time the infant kicked, but we
also pulled it randomly about an equal
number of times regardless of what the
infant was doing. In that case, the for-
ward time probability would be 1 be-
cause every kick would be followed by
mobile movement. But looking back-
ward in time from the occurrence of a
movement of the mobile, only half the
time would there be a preceding kick.
Thus, the backward probability would
be only .5.

It has been only within the last 30
years that attention has been given to
how schedules of reinforcement that
reduce this backward probability also
have adverse effects on the organism's
learning (Maier et al., 1969; Seligman,
1975; Watson, 1977). The initial sci-
entific bias toward what we are refer-
ring to as the forward probability index
is also visible in the history of sym-
bolic logic (see Copi, 1958, p. 16ff.).
In that discipline, logical implication is
framed in the forward direction. This
is illustrated in the truth table functions
that Bower (1989) applies to his model
of the infant's use of logical implica-
tion. The logic is one of examining the
degree to which one element is suffi-
cient for the implied existence of the
other. A implies B allows that B may
exist in the absence of A but that A
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cannot exist in the absence of B. Im-
plicit is the notion that A is sufficient,
but not necessary, for B. Logical im-
plication could have been framed from
the perspective of necessary relations.
That would have been parallel to our
concern for backward conditional
probability. But it turns out that that is
not the convention that evolved in
symbolic logic.
The alignment of directional bias in

the disciplines of psychology and logic
may have been pure historical coinci-
dence, of course. After all, given that
a directional bias was to occur in each
field by chance, the odds ratio would
have been .5 to be aligned. On the oth-
er hand, perhaps it is not arbitrary. Per-
haps there is something deeper im-
plied.

In an effort to discover if the two
indices are differentially resistant to
computation, I turned to simulation as
a means of approaching an answer.
Mathematically, the computation of the
forward time conditional probability
and the backward time conditional
probability are of equivalent difficulty
(Watson, 1979). Psychologically, how-
ever, they seem different, as is revealed
in the way it seems odd to ask about
the probability of the behavior preced-
ing the stimulus when we are consid-
ering how the behavior affected the
stimulus. The question I am posing
now is whether a real-time computa-
tional device would find them differ-
ent.
My choice of simulation device was

what is known as an artificial neural
network in the recent tradition of con-
nectionist models of brain functions
and learning (McClelland & Rumel-
hart, 1986; Rumelhart & McClelland,
1986). Because I would be simulating
the analysis of events in time, I used
what are called neural networks with
recurrent structure (Elman, 1993). The
networks have an input layer, an output
layer, and a middle or so-called hidden
layer. In this recurrent net, the hidden
layer has a feedback connection to the
input layer. As can be seen in Figure
5, the network I used has just one real

output
prediction of

S

virtual input
R feedback activation

input of hidden units

Figure 5. Schematic representation of an arti-
ficial neural network with recurrent structure.
The network is composed of one output unit
producing prediction of the contingent stimulus
(S), three hidden-layer units that give feedback
to provide three virtual input units, and one real
input unit that is activated by occurrence of the
effective response (R).

input unit and one output unit. In this
figure the network also has three units
in its hidden layer (the second level
from the top in the figure). The recur-
rent structure that gives these networks
temporal memory is shown where the
three hidden units are connected to
three so-called virtual input units (the
rightmost three in the bottom layer of
the figure).
The task for the network was this.

On each trial it was informed as to
whether or not a response occurred.
Response occurrence activated its input
node on that trial. The network either
predicted the occurrence of a stimulus
on that trial by activating its output
unit or it didn't. A time series of 1,000
s was generated by randomly produc-
ing a response every other second on
average. Then following a perfect con-
tingency rule, a stimulus was produced
after a fixed delay of 2 s for each in-
stance of a response. So then, across
time, there was no systematic relation
between whether a response occurred
and whether a stimulus occurred on
any given second. There was also no
relation to whether the stimulus oc-
curred 1 s after a response occurred.
There was a perfect relation, however,
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between a response at one point in time
and the occurrence of the stimulus 2 s
later. Could the neural network learn to
make the correct predictions regarding
this contingency? The network was
trained using the first 100 trials of the
time series. Each epoch of training in-
volved making a prediction on each of
the 100 s. In early epochs, the network
was no better than chance. But with
use of the error-correction algorithm
called back propagation, based on the
error across the epoch, the net soon be-
came a virtually perfect predictor of
the stimulus on these 100 trials. This
test of the net was repeated 10 times
with a different randomized starting
condition for its initial weight structure
on each repetition. On average, it took
50 epochs of training to reach perfec-
tion on the training set. In each case,
the net was also virtually perfect in its
predictions across the remaining 900 s
used to test its accuracy of generaliza-
tion. Thus, it was clear that this recur-
rent net had no problem with what we
have been calling forward time condi-
tional probability. Essentially it learned
to predict a stimulus (i.e., activate its
output unit) given that a response oc-
curred (i.e., its input unit had been ac-
tivated) 2 s previously.

However, when the same network
architecture was given the backward
time problem, that of detecting whether
the response systematically precedes
the stimulus, it failed completely. Pro-
viding the network with information
about the sequence of stimuli and ask-
ing for a prediction of response occur-
rence was not computable. In retro-
spect, the reason for this difficulty in
computing the backward index of con-
tingency is quite clear.

In the forward computation, the base
of prediction is the present input and
the prior inputs held in memory (i.e.,
the recurrent activation). The predic-
tive error that controls learning in back
propagation is generated by the differ-
ence between the network's output on
a trial and the correction signal on that
trial, the so-called "teacher" signal. In
the present case, this is provided by

whether or not the stimulus occurs.
The network soon uncovers a simple
pattern relation between its memory of
a response and the present stimulus.
By contrast, in the case of the back-

ward prediction task in which the net-
work is given the fact of a stimulus and
is asked to find a relationship to re-
sponding, the network has a memory
of the recent sequence of stimuli but
the error is determined by the present
status of whether or not a response is
occurring. There is no relationship be-
tween this response and the stimulus
series in memory, because the stimulus
that is contingent on that response has
not yet occurred. For this neural net-
work device to work would require that
it be redesigned to predict a feature of
memory as opposed to a feature of the
present environmental input, as is the
case in a standard recurrent network.
This change in design would require
the device to search in memory for an
appropriate teacher signal (in the con-
nectionist terminology). Such novel
design is clearly conceivable, but it is
also clearly different from and more
complicated than the standard recurrent
network.
What might we conclude from this

simulation? I think that at least one
theoretically important point can be
seen. The two indices of contingency
that are available in conditional prob-
ability analysis, although mathemati-
cally equivalent, are not computation-
ally equivalent when instantiated in a
causal device that is by nature con-
strained by the unidirectional vector of
time. Simple artificial neural networks
can easily compute one but not the oth-
er when there is a temporal separation
between behavior and contingent ef-
fects in the environment. If one accepts
artificial neural networks as an approx-
imation of brain-like devices, then it
appears that backward time conditional
probability analysis is a more complex
act than forward time analysis. This
may help to explain some existing
findings with infants (Diethelm, 1991)
and with adults (Lewicka, 1988) that
indicate that variation in the forward
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time probability appears to have great-
er impact than similar variation in the
backward time probability. The human
adult capacity to conceptualize back-
ward time probability (as I have done
in this paper) and the human infant's
apparent sensitivity to manipulation of
this aspect of contingency (Watson,
1979) argue for the existence of detec-
tion mechanisms at least within our
species. It is enticing, though surely
premature, to speculate that humans
may possess a special sensitivity for
backward probability relative to other
animals, possibly associated with our
linguistic capacity (e.g., in relation to
postcedent modification). Yet, as the
history of psychology and logic, as
well as the few studies cited above, im-
ply, this sensitivity appears to be a
more arduous act than is that involved
in the detection of forward time prob-
ability.

General Conclusions
In this paper I have tried to explore

some issues that are relevant to the
concept of contingency and, in partic-
ular, to some issues regarding organ-
ismic adaptation to contingency. I have
made evolutionary and ontogenetic
speculations. The evolutionary specu-
lation, probably not testable (other than
in evolutionary simulation, e.g., Nolfi
& Parisi, 1995), is that primary rein-
forcer power evolved after and as a
consequence of the evolution of con-
tingency (i.e., the evolution of effective
behavior). The ontogenetic specula-
tion, probably quite testable, is that
contingency detection has at least four
basic computational options, and these
may well emerge in humans in a five-
stage progressive sequence of appar-
ently increasing complexity regarding
what we have termed the analyses of
contiguity, correlation, forward time
conditional probability, backward time
conditional probability, and finally log-
ical implication.
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